
The need for speed

Marcus Börger

international PHP2004 conference

Marcus Börger The need for speed 2

The need for speed
General aspects

Communication
Hardware
Operating system

How to use PHP
As a web scripting language
As a template system
As a RAD tool
The Rasmus way

What to do and what not to do with PHP

Marcus Börger The need for speed 3

Optimization?
Ef|fekt [lat.] der; -[e]s, -e: a) Wirkung, Erfolg;

b) (meist Plural) auf Wirkung abzielendes
Ausdrucks- u. Gestaltungsmittel; c) Ergebnis,
sich aus etwas ergebender nutzen. […]
ef|fek|tiv [lat.]: a) tatsächlich, wriklich; b)
wirkungsvoll (im Verhältnis zu den
aufgewendeten Mitteln); c) (ugs.) überhaupt,
ganz u. gar, z.B. – nichts leisten; d) lohnend.
[…] Ef|fek|ti|vität die; Wirksamkeit,
Durchschlagskraft, Leistungsfähigkeit,
Wirkungskraft

Marcus Börger The need for speed 4

Optimization?
ef|fi|zi|ent; -este [lat.] wirksam; wirtschaftlich;

Ef|fi|zi|enz, die; -, -en Wirksamkeit

Effizienz (engl. efficiency): Ein Algorithmus heißt
effizient, wenn er ein vorgegebenes Problem in
möglichst kurzer Zeit und/oder mit möglichst
geringem Aufwand an Betriebsmitteln löst. In
der Praxis interessiert man sich meist für die
benötigte Laufzeit (bzw. Für die Anzahl der
auszuführenden Operationen), für die Größe des
Speichers oder für die Zahl der Zugriffe auf
Hintergrundspeicher. Die Komplexitätstheorie
untersucht die Ordnung dieser Funktionen in
Abhängigkeit von der Länge der Eingabe.

Marcus Börger The need for speed 5

General aspects
Do not loose your focus

Think before you do anything
Always check you are still on track
Estimate the time and money you (still) have
Estimate the time and money you (still) need

Are you using the right tools?
Is PHP the correct choice?
After all is a web application the right thing?

Are you using the right algorithms?
Is there a better way?

Know your environment
Know your team

Marcus Börger The need for speed 6

Communication

internet

your server or serverfarm

Marcus Börger The need for speed 7

Communication
The sum is smaller than the whole

No need to apply more servers if no more bandwidth is
available

Marcus Börger The need for speed 8

Communication
The sum is smaller than the whole

No need to apply more servers if no more bandwith is
available

A prepared DDoS can put down anything
Applying more servers means they communicate

Marcus Börger The need for speed 9

Communication
The sum is smaller than the whole

No need to apply more servers if no more bandwith is
available

A prepared DDoS can put down anything
Applying more servers might help

They will communicate
You need more software
You have more points of failure

Marcus Börger The need for speed 10

Communication
The sum is smaller than the whole

No need to apply more servers if no more bandwith is
available

A prepared DDoS can put down anything
Applying more servers might help

They will communicate
You need more software
You have more points of failure

New ideas can help

Marcus Börger The need for speed 11

Hardware
Every single hardware piece is a point of failure

Avoid single point of failures
Use the hardware as specified (speed, temperature)
Don’t use it to emulate other hardware
Don't use it to imitate other hardware

If you don't have enough knowledge give it away

Marcus Börger The need for speed 12

Operating system
Choose the OS based on

your hardware
your software
what you are going to do

Marcus Börger The need for speed 13

Architecture
Apply specialization

Internet

ISDN

WebServer

dHTML

DB-Server

Data Templates

AppServer

VPN

Firewall

Proxy

Marcus Börger The need for speed 14

Database Server
What kind of data
What size does your data have
Who is responsible for data integrity
Who is responsible for security
Does the database need its own logic

Marcus Börger The need for speed 15

Application Server
You want dependency injection?
You need inversion of control?

PHP would need state first

WebServer

dHTML

DB-Server

Data Templates

AppServer

Marcus Börger The need for speed 16

Web server
Apache

Suitable for nearly all needs

Microsoft IIS
Perfect when the rest is also Microsoft
Threadsafty issues
Not the major/focused development platform

Zeus
Very fast

Marcus Börger The need for speed 17

Web server

TUX - kernel-based web server
Virtual Host support.

thttpd - tiny/turbo/throttling HTTP server
Non-blocking I/O is good.
Throttling capabilities.

lighttpd
On the fly compression.
Excellent virtual host support.

Marcus Börger The need for speed 18

Web server

Plenty of CPU power but limited bandwidth

Turn on output compression

Much bandwidth but limited CPU power

Do not use output compression

Marcus Börger The need for speed 19

Web Server
Use different web servers for different things

internet

static contents scripts multimedia content

Marcus Börger The need for speed 20

Reverse Proxy

Cache static portions of your output

Marcus Börger The need for speed 21

Other tricks

Use a RAM disk where appropriate

Use short paths and a flat layout

Marcus Börger The need for speed 22

After all, Apache is slow?

Compile your own apache
Build with static modules
Use –disable-all
Enable all compiler optimizations with -O3
Tell the compiler what CPU you use via -march -mcpu
Use CPU specific features -msse -mmmx -mfpmath=sse

Marcus Börger The need for speed 23

After all, CGI is slow?

Compile your own CGI
Build with static modules
Use –disable-all
Enable all compiler optimizations with -O3
Tell the compiler what CPU you use via -march -mcpu
Use CPU specific features -msse -mmmx -mfpmath=sse

Use strip to clean up your binaries
Saves loading time
Saves memory usage

Marcus Börger The need for speed 24

Security

Today security is the most important thing

Many script kiddies will penetrate your application
Without deep knowledge you cannot detect attacks
Detecting attacks leads to protection
Protection prevents misuse of your hard- and software
Protection keeps your data safe

Unsafe data or open systems lead directly to court

Marcus Börger The need for speed 25

What is PHP
PHP is a scripting language specifically designed to help
developers solve web problems, it works by embedding
sections of code within HTML blocks.

PHP Advantages
Easy to learn
Targeted, built-in functions for web developers
Good introduction to programming
Configurable
Simple extension API
PEAR
Runs britneyspears.com

PHP Disadvantages
Focused on the Web environment
Poor OO support until PHP 5
Configurability Hurts Portability
Easy for beginning users,
Easy for beginning users to make mistakes

Marcus Börger The need for speed 26

PHP - As web scripting language

Every page is its own PHP script

Flexible and easy
Independent scripts by independent programmers

Hard to apply general tasks to all pages
Includes can help
CSS can help

Marcus Börger The need for speed 27

PHP - As a template system

PHP was developed as a template system

PHP can be used as template system

PHP can be the language to develop a template system

Marcus Börger The need for speed 28

PHP - As a RAD tool

No PHP in your real applications

Test with PHP

Implement in another language

Marcus Börger The need for speed 29

PHP - The Rasmus way
Small basic PHP scripts
Small include files to solve general aspects
Include files for the business logic
Specialized extensions for the actual work

Marcus Börger The need for speed 30

Optimize
Everything has a cost
Limit the number of includes per request
Use the right tool for the right problem
Use an opcode cache
Use short and easy regular expressions
Cache whatever you can

Optimization is the root of all evil
It steals all your time
It makes everything complicated

In rare cases it leads to less and easier code

Marcus Börger The need for speed 31

Everything has a cost

Do not use features you do not need
CGI means module startup/shutdown for every page
include_path means every possibility has to be tested
open_basedir means every entry has to be checked
variables_order lets you decide what you need
magic_quotes_* means parsing/changing overhead
register_argc_argv is only for CLI
always_populate_raw_post_data only if necessary

Marcus Börger The need for speed 32

Everything has a cost

ext/tidy can beautify your output
you could do it before you send the data

ext/tidy can strip out whitespace
reduces the bandwidth needed
takes CPU time

Marcus Börger The need for speed 33

Everything has a cost

PHP can dynamically resize images
you could supply the resized images
you could cache the resized images

Marcus Börger The need for speed 34

Everything has a cost
Function calls are expensive
User Functions are more expensive
Passing parameters takes time

Learn about the PHP API
Always have the manual at hand
Do not write PHP functions when available by PHP
Do not have long optional parameter lists
Do not use functions for multiple purposes

Also: Do not write spaghetti code
Document your code

Marcus Börger The need for speed 35

Everything has a cost
Copying a variable takes time

Learn when PHP needs to copy
Learn about references

Marcus Börger The need for speed 36

Everything has a cost

Close your sessions early
Use session_write_close()
An open session prevents others accessing the session

Marcus Börger The need for speed 37

References

A famous PHP 4 rule:

If your code doesn't work spread some '&'s into it

If it still doesn't work use more '&'

Understand references

Marcus Börger The need for speed 38

References
References are aliases

If you change one you change all others

<?php // empty global table

$a = 25; // creates a zval

$b = $a; // creates a pointer to $a

$b = 42; // makes $b a copy of $a and changes it

$c = $a; // create another pointer to $a

$d = &$a; // split/copy $a, creates $d as a reference to $a

$c = 43; // change $c only

$d = 0; // changes $d and hence $a

?>

Marcus Börger The need for speed 39

References
Variables are normally copied on function calls

<?php

function test($a)
{
}

$a = array(25); // creates a global zval

test($a); // creates a new symbol table, copies $a

?>

Marcus Börger The need for speed 40

References
Variables can be passed as references

<?php

function test(&$b)
{

$b[] = 42; // adds a new value to local $b = global $a
}

$a = array(25); // creates a global zval

test($a); // creates a new symbol table

?>

Marcus Börger The need for speed 41

References
Variables are normally copied on return

<?php

function test(&$b)
{

return $b;
}

$a = array(25);

$b = test($a); // $b is a new value, copied on return

?>

Marcus Börger The need for speed 42

References
Functions can return aliases

<?php

function &test(&$b)
{

return $b;
}

$a = array(25);

$b = test($a); // $b is a new value, copied after return

?>

Marcus Börger The need for speed 43

References
Functions can return aliases
Explicit use of the returned reference is needed

<?php

function &test(&$b)
{

return $b;
}

$a = array(25);

$b = &test($a); // $b is a reference to $a

?>

Marcus Börger The need for speed 44

References
Objects should always be references

In PHP 5 they are object-references

<?php
class test
{

function factory() {
return new test();

}
}

$obj = test::factory();
?>

Marcus Börger The need for speed 45

References
Objects should always be references

In PHP 5 they are object-references
In PHP 3 and 4 you have to take care yourself

<?php
class test
{

function &factory() {
$a = &new test();
return $a;

}
}

$obj = &test::factory();
?>

Marcus Börger The need for speed 46

References
Most internal functions don't use references

This is to allows you to pass arrays and strings without
copying them into a variable first

<?php
$a = array_fill(0, $cnt, 'foo');
array_key_exists($i, $a); // is_ref == 0, refcount == 1
$b = $a;
array_key_exists($i, $a); // is_ref == 0, refcount == 2
array_key_exists($i, &$a); // is_ref == 0, refcount == 2
unset($b);
$b =& $a; // making a reference, but not using it
array_key_exists($i, $b); // is_ref == 1, refcount > 1 (pass as var)
array_key_exists($i, &$a); // is_ref == 1, refcount > 1 (pass as ref)
unset($b);
array_key_exists($i, $a); // is_ref == ?, refcount == 1
?>

Marcus Börger The need for speed 47

Use the right tool
For the right problem

Use OOP where appropriate not where nice

Use layers not because it is easy or looks nice

Use abstraction if derived or used often

Use indirection if it is of any advantage

Marcus Börger The need for speed 48

Profile your code
Profile your code

Do not use microtime() for performance measurements
Use a profiler for your PHP script

APD
XDebug
...

Use a profiler for 'grown up' problems
Valgrind/calltree

Marcus Börger The need for speed 49

The 80 / 20 rule

80% of your code takes less than 20% runtime

You don't need to optimize anything in the 80%

Find out which are the 20% to optimize

Marcus Börger The need for speed 50

XDebug
A tool to debug PHP

Tracing function calls

A profiler

Marcus Börger The need for speed 51

Cache whatever you can
Most dynamic data does not change

At least not every time it is requested

Use cache control header

Marcus Börger The need for speed 52

Cache whatever you can
Pre generation

Generate your data once
Server the generated data statically

On demand
Generate when requested for the first time

Dynamic caching
Generate when necessary
Serve generated data statically otherwise

Marcus Börger The need for speed 53

Use an opcode cache

Marcus Börger The need for speed 54

Use an opcode cache

Marcus Börger The need for speed 55

Use an opcode cache
Turck MMCache (GPL)

Implements many features
Development halted

APC (PHP)
Slow but development continues
Weak optimizer

ionCube PHP Accelerator
It works
Development halted?
Free, but closed source

Zend Cache (Proprietary)
Implements many features
Expensive

Marcus Börger The need for speed 56

Use an opcode cache

requests / second

156

161

191

196

198

200

202

0 50 100 150 200 250

Standard PHP 4.3

Fix include_path, and only populate GP

Add IonCube Accelerator on top

APC no optimizer, IPC shared mem +
semaphore locking

Turck MMCache no optimizer with spinlocks

APC no optimizer, mmap mem + user space
sleep locks

Turck MMCache with optimizer and spinlocks

Marcus Börger The need for speed 57

Use an opcode cache

Marcus Börger The need for speed 58

Stop
Don’t get overexcited about optimization

Sometimes it is cheaper and more efficient
to buy another server
to increase bandwidth
To buy faster software

Marcus Börger The need for speed 59

THANK YOU

http://somabo.de/talks/

http://talks.php.net

